60x^2+250=50x^2+350

Simple and best practice solution for 60x^2+250=50x^2+350 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 60x^2+250=50x^2+350 equation:



60x^2+250=50x^2+350
We move all terms to the left:
60x^2+250-(50x^2+350)=0
We get rid of parentheses
60x^2-50x^2-350+250=0
We add all the numbers together, and all the variables
10x^2-100=0
a = 10; b = 0; c = -100;
Δ = b2-4ac
Δ = 02-4·10·(-100)
Δ = 4000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4000}=\sqrt{400*10}=\sqrt{400}*\sqrt{10}=20\sqrt{10}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{10}}{2*10}=\frac{0-20\sqrt{10}}{20} =-\frac{20\sqrt{10}}{20} =-\sqrt{10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{10}}{2*10}=\frac{0+20\sqrt{10}}{20} =\frac{20\sqrt{10}}{20} =\sqrt{10} $

See similar equations:

| 7m+25=35m+18 | | 2x-10=-5x+11 | | -10x-12=23-11x | | 8x+9=3x+69 | | e/7.4=9.6 | | -2(-7x-9)=7 | | y=4(4)+9 | | 7x-4/4+3=2x | | 6n-10=104 | | -12c—4+7.5c—11=-6 | | -6-(-v-9)=-1 | | -17-x=8+6-9x | | -2x-125=36-9x | | 5p+8p=p-5p | | 6+3x=40+1 | | r+5=—3 | | y=4(-5)+9 | | 2(w+9)=-3(3w-2)+2w | | 13-4w=1-1w | | 7.93-15.2=0.66x | | -69+12x=7x+26 | | 12-6d+2d=24 | | 4=10j-(-2j+8) | | 1x+2=-1x-14 | | -128-4x=3x+117 | | 2/x+1/3=5/x | | -5/6z=-10/3 | | k-(8+6k)=-53 | | 2q-6=-9 | | 2.5x-1=x+.25 | | 17x+14=20x-14 | | 2.5x-1=x+.35 |

Equations solver categories